Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 211: 111797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36868323

RESUMO

Sexual dimorphism is a key factor to consider in the ageing process given the impact that it has on life expectancy. The oxidative-inflammatory theory of ageing states that the ageing process is the result of the establishment of oxidative stress which, due to the interplay of the immune system, translates into inflammatory stress, and that both processes are responsible for the damage and loss of function of an organism. We show that there are relevant gender differences in a number of oxidative and inflammatory markers and propose that they may account for the differential lifespan between sexes, given that males display, in general, higher oxidation and basal inflammation. In addition, we explain the significant role of circulating cell-free DNA as a marker of oxidative damage and an inductor of inflammation, connecting both processes and having the potential to become a useful ageing marker. Finally, we discuss how oxidative and inflammatory changes take place differentially with ageing in each sex, which could also have an impact on the sex-differential lifespan. Further research including sex as an essential variable is needed to understand the grounds of sex differences in ageing and to better comprehend ageing itself.


Assuntos
Envelhecimento , Caracteres Sexuais , Feminino , Humanos , Masculino , Fatores Sexuais , Longevidade/genética , Inflamação
2.
Mech Ageing Dev ; 211: 111798, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907251

RESUMO

Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.


Assuntos
Longevidade , Caracteres Sexuais , Feminino , Masculino , Humanos , Sistema Endócrino , Antioxidantes
3.
Expert Rev Mol Med ; 24: e35, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36111609

RESUMO

Ageing is interrelated with the development of immunosenescence. This article focuses on one of the cell sets of the adaptive immune system, T cells, and provides a review of the known changes in T cells associated with ageing. Such fundamental changes affect both cell molecular content and internal ordering. However, acquiring a complete description of the changes at these levels would require extensive measurements of parameters and, furthermore, important fine details of the internal ordering that may be difficult to detect. Therefore, an alternative approach for the characterisation of cells consists of the performance of physical measurements of the whole cell, such as deformability measurements or migration measurements: the physical parameters, complementing the commonly used chemical biomarkers, may contribute to a better understanding of the evolution of T-cell states during ageing. Mechanical measurements, among other biophysical measurements, have the advantage of their relative simplicity: one single parameter agglutinates the complex effects of the variety of changes that gradually appear in cells during ageing.


Assuntos
Imunossenescência , Linfócitos T , Envelhecimento , Biomarcadores , Humanos
4.
Immunology ; 167(4): 622-639, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054660

RESUMO

Age-associated changes in T-cell function play a central role in immunosenescence. The role of aging in the decreased T-cell repertoire, primarily because of thymic involution, has been extensively studied. However, increasing evidence indicates that aging also modulates the mechanical properties of cells and the internal ordering of diverse cell components. Cellular functions are generally dictated by the biophysical phenotype of cells, which itself is also tightly regulated at the molecular level. Based on previous evidence suggesting that the relative nuclear size contributes to variations of T-cell stiffness, here we examined whether age-associated changes in T-cell migration are dictated by biophysical parameters, in part through nuclear cytoskeleton organization and cell deformability. In this study, we first performed longitudinal analyses of a repertoire of 111 functional, biophysical and biomolecular features of the nucleus and cytoskeleton of mice CD4+ and CD8+ T cells, in both naive and memory state. Focusing on the pairwise correlations, we found that age-related changes in nuclear architecture and internal ordering were correlated with T-cell stiffening and declined interstitial migration. A similarity analysis confirmed that cell-to-cell variation was a direct result of the aging process and we applied regression models to identify biomarkers that can accurately estimate individuals' age. Finally, we propose a biophysical model for a comprehensive understanding of the results: aging involves an evolution of the relative nuclear size, in part through DNA-hypomethylation and nuclear lamin B1, which implies an increased cell stiffness, thus inducing a decline in cell migration.


Assuntos
Linfócitos T CD8-Positivos , Imunossenescência , Camundongos , Animais , Timo/fisiologia , Linfócitos T CD4-Positivos , Envelhecimento
5.
Mech Ageing Dev ; 207: 111722, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961414

RESUMO

Mitochondrial DNA sequences were found inserted in the nuclear genome of mouse peritoneal T lymphocytes that increased progressively with aging. These insertions were preferentially located at the pericentromeric heterochromatin. In the same individuals, binucleated T-cells with micronuclei showed a significantly increased frequency associated with age. Most of them were positive for centromere sequences, reflecting the loss of chromatids or whole chromosomes. The proliferative capacity of T lymphocytes decreased with age as well as the glutathione reductase activity, whereas the oxidized glutathione and malondialdehyde concentrations exhibited a significant increase. These results may point to a common process that provides insights for a new approach to understanding immunosenescence. We propose a novel mechanism in which mitochondrial fragments, originated by the increased oxidative stress status during aging, accumulate inside the nuclear genome of T lymphocytes in a time-dependent way. The primary entrance of mitochondrial fragments at the pericentromeric regions may compromise chromosome segregation, causing genetic loss that leads to micronuclei formation, rendering aneuploid cells with reduced proliferation capacity, one of the hallmark of immunosenescence. Future experiments deciphering the mechanistic basis of this phenomenon are needed.


Assuntos
DNA Mitocondrial , Imunossenescência , Animais , Segregação de Cromossomos , DNA Mitocondrial/genética , Dissulfeto de Glutationa/genética , Glutationa Redutase/genética , Heterocromatina , Malondialdeído , Camundongos
6.
Soft Matter ; 16(24): 5669-5678, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519732

RESUMO

Deformability and internal ordering are key features related to cell function, particularly critical for cells that routinely undergo large deformations, like T cells during extravasation and migration. In the measurement of cell deformability, a considerable variability is typically obtained, masking the identification of possible interrelationships between deformability, internal ordering and cell function. We report the development of a single-cell methodology that combines measurements of living-cell deformability, using micropipette aspiration, and three-dimensional confocal analysis of the nucleus and cytoskeleton. We show that this single-cell approach can serve as a powerful tool to identify appropriate parameters that characterize deformability within a population of cells, not readably discernable in population-averaged data. By applying this single-cell methodology to mouse CD4+ T cells, our results demonstrate that the relative size of the nucleus, better than other geometrical or cytoskeletal features, effectively determines the overall deformability of the cells within the population.


Assuntos
Linfócitos T CD4-Positivos/citologia , Modelos Biológicos , Animais , Fenômenos Biofísicos , Núcleo Celular , Dimetilpolisiloxanos , Módulo de Elasticidade , Feminino , Fluorescência , Camundongos Endogâmicos ICR , Microscopia Confocal , Análise de Célula Única , Viscosidade
7.
Genome ; 63(8): 365-374, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32396758

RESUMO

We review the insertion of mitochondrial DNA (mtDNA) fragments into nuclear DNA (NUMTS) as a general and ongoing process that has occurred many times during genome evolution. Fragments of mtDNA are generated during the lifetime of organisms in both somatic and germinal cells, by the production of reactive oxygen species in the mitochondria. The fragments are inserted into the nucleus during the double-strand breaks repair via the non-homologous end-joining machinery, followed by genomic instability, giving rise to the high variability observed in NUMT patterns among species, populations, or genotypes. Some de novo produced mtDNA insertions show harmful effects, being involved in human diseases, carcinogenesis, and ageing. NUMT generation is a non-stop process overpassing the Mendelian transmission. This parasitic property ensures their survival even against their harmful effects. The accumulation of mtDNA fragments mainly at pericentromeric and subtelomeric regions is important to understand the transmission and integration of NUMTs into the genomes. The possible effect of female meiotic drive for mtDNA insertions at centromeres remains to be studied. In spite of the harmful feature of NUMTs, they are important in cell evolution, representing a major source of genomic variation.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/fisiologia , Evolução Molecular , Mutagênese Insercional , Envelhecimento/genética , Animais , Centrômero , DNA Mitocondrial/genética , Doença/genética , Humanos , Telômero
8.
Evolution ; 72(6): 1216-1224, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29741266

RESUMO

B chromosomes have been reported in about 15% of eukaryotes, but long-term dynamics of B chromosomes in a single natural population has rarely been analyzed. Prospero autumnale plants collected in 1981 and 1983 at Cuesta de La Palma population had shown the presence of B chromosomes. We analyze here seven additional samples collected between 1987 and 2015, and show that B frequency increased significantly during the 1980s and showed minor fluctuations between 2005 and 2015. A mother-offspring analysis of B chromosome transmission, at population level, showed significant drive on the male side (kB  = 0.65) and significant drag on the female side (kB  = 0.33), with average B transmission rate being very close to the Mendelian rate (0.5). No significant effects of B chromosomes were observed on a number of vigor and fertility-related traits. Within a parasite/host framework, these results suggest that B chromosomes' drive on the male side is the main pathway for B chromosome invasion, whereas B chromosome drag on the female side might be the main manifestation of host genome resistance in this species. Prospero autumnale thus illuminates a novel evolutionary pathway for B chromosome neutralization by means of a decrease in B transmission through the nondriving sex.


Assuntos
Asparagaceae/genética , Cromossomos de Plantas/genética , Evolução Molecular , Fertilidade , Cariótipo , Pólen
9.
Redox Biol ; 12: 423-437, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28319893

RESUMO

The age-related changes in the immune functions (immunosenescence) may be mediated by an increase of oxidative stress and damage affecting leukocytes. Although the "oxidation-inflammation" theory of aging proposes that phagocytes are the main immune cells contributing to "oxi-inflamm-aging", this idea has not been corroborated. The aim of this work was to characterize the age-related changes in several parameters of oxidative stress and immune function, as well as in lipofuscin accumulation ("a hallmark of aging"), in both total peritoneal leukocyte population and isolated peritoneal macrophages. Adult, mature, old and long-lived mice (7, 13, 18 and 30 months of age, respectively) were used. The xanthine oxidase (XO) activity-expression, basal levels of superoxide anion and ROS, catalase activity, oxidized (GSSG) and reduced (GSH) glutathione content and lipofuscin levels, as well as both phagocytosis and digestion capacity were evaluated. The results showed an age-related increase of oxidative stress and lipofuscin accumulation in murine peritoneal leukocytes, but especially in macrophages. Macrophages from old mice showed lower antioxidant defenses (catalase activity and GSH levels), higher oxidizing compounds (XO activity/expression and superoxide, ROS and GSSG levels) and lipofuscin levels, together with an impaired macrophage functions, in comparison to adults. In contrast, long-lived mice showed in their peritoneal leukocytes, and especially in macrophages, a well-preserved redox state and maintenance of their immune functions, all which could account for their high longevity. Interestingly, macrophages showed higher XO activity and lipofuscin accumulation than lymphocytes in all the ages analyzed. Our results support that macrophages play a central role in the chronic oxidative stress associated with aging, and the fact that phagocytes are key cells contributing to immunosenescence and "oxi-inflamm-aging". Moreover, the determination of oxidative stress and immune function parameters, together with the lipofuscin quantification, in macrophages, can be used as useful markers of the rate of aging and longevity.


Assuntos
Envelhecimento/metabolismo , Lipofuscina/metabolismo , Macrófagos Peritoneais/fisiologia , Envelhecimento/imunologia , Animais , Feminino , Leucócitos/imunologia , Leucócitos/fisiologia , Macrófagos Peritoneais/imunologia , Camundongos , Estresse Oxidativo , Fagocitose , Superóxidos/metabolismo , Xantina Oxidase/metabolismo
10.
Cytogenet Genome Res ; 143(1-3): 189-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25096176

RESUMO

We have studied the trimethylation dynamics of lysines 4 and 27 of histone H3 in rye with and without B chromosomes (Bs) in root tip mitosis, meiosis, and pollen grain mitosis by immunostaining. In root meristems, H3K4me3 immunolabeling was homogeneous along the chromosome arms of the normal complement (As), with the exception of the pericentromeric and subtelomeric regions which were unlabeled. On the contrary, a signal was observed on the long arm of the B chromosome, in the region where most of the B-specific repeats are located. H3K27me3 immunosignals were observed on the subtelomeric heterochromatic region of the As and the Bs and some interstitial bands of the As. Thus, the terminal region of the Bs showed both signals, whereas the subtelomeric region of the As showed H3K27me3 immunosignals only. During meiosis and first pollen grain mitosis, the immunosignals were observed distributed as in the root tip mitosis in plants with or without Bs. However, we observed remarkable changes in the immunolabeling patterns during the second pollen grain mitosis between 0B and +B plants. In 0B plants, H3K4me3 immunosignals were similarly distributed in the vegetative and generative nuclei. In B-carrying plants, the vegetative nucleus showed a lighter signal than the generative one. In 0B plants, all nuclei of the microgametophyte showed H3K27me3 immunosignals. In B-carrying plants, the generative nucleus and, correspondingly, the second metaphase, anaphase, and sperm nuclei did not show any signal. When the Bs were lost as micronuclei, they did not show any H3K4me3 or H3K27me3 signal. Most remarkably, Bs are able to change the pattern of H3 methylation on K4 and K27 during the second pollen mitosis, resulting in differently labeled sperm nuclei in 0 and +B plants.


Assuntos
Cromossomos de Plantas/genética , Gametogênese/genética , Histonas/genética , Secale/genética , Núcleo Celular/genética , Heterocromatina/genética , Meiose/genética , Metáfase/genética , Metilação , Mitose/genética , Raízes de Plantas/genética , Pólen/metabolismo
11.
Plant Cell ; 24(10): 4124-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23104833

RESUMO

B chromosomes (Bs) are supernumerary components of the genome and do not confer any advantages on the organisms that harbor them. The maintenance of Bs in natural populations is possible by their transmission at higher than Mendelian frequencies. Although drive is the key for understanding B chromosomes, the mechanism is largely unknown. We provide direct insights into the cellular mechanism of B chromosome drive in the male gametophyte of rye (Secale cereale). We found that nondisjunction of Bs is accompanied by centromere activity and is likely caused by extended cohesion of the B sister chromatids. The B centromere originated from an A centromere, which accumulated B-specific repeats and rearrangements. Because of unequal spindle formation at the first pollen mitosis, nondisjoined B chromatids preferentially become located toward the generative pole. The failure to resolve pericentromeric cohesion is under the control of the B-specific nondisjunction control region. Hence, a combination of nondisjunction and unequal spindle formation at first pollen mitosis results in the accumulation of Bs in the generative nucleus and therefore ensures their transmission at a higher than expected rate to the next generation.


Assuntos
Cromossomos de Plantas/fisiologia , Mitose , Não Disjunção Genética , Pólen/genética , Secale/genética , Centrômero/metabolismo , Cromossomos de Plantas/ultraestrutura , Rearranjo Gênico , Histonas/metabolismo , Dados de Sequência Molecular , Pólen/citologia , Pólen/metabolismo , Secale/ultraestrutura
12.
Genome ; 54(7): 555-64, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21751868

RESUMO

We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.


Assuntos
Genoma de Planta/genética , Secale/genética , Sequência de Bases , Cromossomos de Plantas/genética , Clonagem Molecular , Genes de Plantas , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Translocação Genética
13.
Mitochondrion ; 10(5): 479-86, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20546951

RESUMO

Mitochondrial DNA (mtDNA) mutations increase with age. However, the number of cells with predominantly mutated mtDNA is small in old animals. Here a new hypothesis is proposed: mtDNA fragments may insert into nuclear DNA contributing to aging and related diseases by alterations in the nucleus. Real-time PCR quantification shows that sequences of cytochrome oxidase III and 16S rRNA from mtDNA are present in highly purified nuclei from liver and brain in young and old rats. The sequences of these insertions revealed that they contain single nucleotide polymorphisms identical to those present in mtDNA of the same animal. Interestingly, the amount of mitochondrial sequences in nuclear DNA increases with age in both tissues. In situ hybridization of mtDNA to nuclear DNA confirms the presence of mtDNA sequences inside nuclear DNA in rat hepatocytes. Bone marrow metaphase cells from both young and old rats show mtDNA at centromeric regions in 20 out of the 2n=40 chromosomes. Consequently, mitochondria can be a major trigger of aging but the final target could also be the nucleus.


Assuntos
Cromossomos , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Mutagênese Insercional , Fatores Etários , Animais , Encéfalo/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Hibridização In Situ , Fígado/patologia , Masculino , Polimorfismo de Nucleotídeo Único , RNA Ribossômico 16S/genética , Ratos , Ratos Wistar , Análise de Sequência de DNA
14.
Genetics ; 166(2): 999-1009, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15020483

RESUMO

B chromosomes (B's), knobbed chromosomes, and chromosome 6 (NOR) of maize undergo nondisjunction and micronucleus formation in binucleate tapetal cells. These chromosome instabilities are regular events in the program of tapetal cell death, but the B's strongly increase A chromosome instability. We studied 1B and 0B plants belonging to selected lines for high or low B transmission rate and their F1 hybrids. These lines are characterized by meiotic conservation or loss of B chromosomes, respectively. The female B transmission (fBtl) allele(s) for low B transmission is dominant, inducing micronucleus formation and B nondisjunction. We hypothesize that the fBtl allele(s) induces knob instability. This instability would be sufficient to produce B loss in both meiocytes and binucleate tapetal cells. B instability could, in turn, produce instabilities in all chromosomes of maize complement. To establish whether the chromosomal instabilities are related to the tapetal programmed cell death (PCD) process, we applied the TUNEL technique. PCD, estimated as the frequency of binucleate tapetal cells with TUNEL label, was significantly correlated with the formation of micronuclei and the frequency of pollen abortion. It can be concluded that the observed chromosome instabilities are important to the PCD process and to the development of microspores to form viable pollen grains.


Assuntos
Apoptose/genética , Instabilidade Cromossômica , Pólen/genética , Zea mays/genética , Apoptose/fisiologia , Sondas de DNA , Pólen/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...